Welcome!!!!!!

LECTURE # 3

Muhammad Hafeez Javed Foundation University Rawalpindi rmhjaved@gmail.com www.rmhjaved.com

Recap Lecture-2

Kleene Star Closure, Plus operation, recursive definition of languages, INTEGER, EVEN, factorial, PALINDROME, {aⁿbⁿ}, languages of strings (i) ending in a, (ii) beginning and ending in same letters, (iii) containing aa or bb (iv)containing exactly aa,

Task

3

► Q)

- 1) Let S={ab, bb} and T={ab, bb, bbbb} Show that $S^* = T^*$ [Hint $S^* \subseteq T^*$ and $T^* \subseteq S^*$]
- 2) Let S={ab, bb} and T={ab, bb, bbb} Show that $S^* \neq T^*$ But $S^* \subset T^*$

Solution: Since $S \subset T$, so every string belonging to S^* , also belongs to T^* but bbb is a string belongs to T^* but does not belong to S^* .

- 3) Let S={a, bb, bab, abaab} be a set of strings. Are abbabaabab and baabbbabbaabb in S*? Does any word in S* have odd number of b's?
 - **Solution:** since abbabaabab can be grouped as (a)(bb)(abaab)ab, which shows that the last member of the group does not belong to S, so abbabaabab is not in S^{*}, while baabbbabbaabb can not be grouped as members of S, hence baabbbabbaabb is not in S^{*}. Since each string in S has even number of b's so there is no possiblity of any string with odd number of b's to be in S^{*}.

Task

Q1)Is there any case when S⁺ contains Λ? If yes then justify your answer.
Solution: consider S={Λ,a} then S⁺ ={Λ, a, aa, aaa, ...} Here Λ is in S⁺ as member of S. Thus Λ will be in S⁺, in this case.

Q2) Prove that for any set of strings S

i. $(S^+)^* = (S^*)^*$

Solution: In general A is not in S⁺, while A does belong to S^{*}. Obviously A will now be in $(S^+)^*$, while $(S^*)^*$ and S^{*} generate the same set of strings. Hence $(S^+)^*=(S^*)^*$.

Q2) continued...

7

ii) $(S^+)^+=S^+$ **Solution**: since S⁺ generates all possible strings that can be obtained by concatenating the strings of S, so $(S^+)^+$ generates all possible strings that can be obtained by concatenating the strings of S⁺, will not generate any new string. Hence $(S^+)^+=S^+$

Q2) continued...

iii) Is $(S^*)^+ = (S^+)^*$

Solution: since Λ belongs to S^{*}, so Λ will belong to (S^{*})⁺ as member of S^{*}. Moreover Λ may not belong to S⁺, in general, while Λ will automatically belong to (S⁺)^{*}. Hence (S^{*})⁺=(S⁺)^{*}

8

Regular Expression

As discussed earlier that a^{*} generates

Λ, α, αα, ααα, ...

and a^+ generates a, aa, aaa, aaa, aaaa, ..., so the language $L_1 = \{\Lambda, a, aa, aaa, ...\}$ and $L_2 = \{a, aa, aaa, aaa, aaaa, ...\}$ can simply be expressed by a^* and a^+ , respectively.

a^{*} and a⁺ are called the regular expressions (RE) for L_1 and L_2 respectively.

Note: a^+ , aa^* and a^*a generate L_2 .

Recursive definition of Regular Expression(RE)

<u>Step 1:</u> Every letter of Σ including Λ is a regular expression. <u>Step 2:</u> If r_1 and r2 are regular expressions then 1. (r_1)

- 2. r₁ r₂
- 3. $r_1 + r_2$ and

4. r₁*
 are also regular expressions.
 <u>Step 3:</u> Nothing else is a regular expression.

Defining Languages (continued)...

Method 3 (Regular Expressions)

• Consider the language L={ Λ , x, xx, xx, ...} of strings, defined over $\Sigma = \{x\}$.

We can write this language as the Kleene star closure of alphabet Σ or $L=\Sigma^*=\{x\}^*$

this language can also be expressed by the regular expression x^{*}.

Similarly the language L={x, xx, xxx,...}, defined over Σ = {x}, can be expressed by the regular expression x⁺. Now consider another language L, consisting of all possible strings, defined over $\Sigma = \{a, b\}$. This language can also be expressed by the regular expression $(a + b)^*$.

Now consider another language L, of strings having exactly double a, defined over Σ = {a, b}, then it's regular expression may be b*aab* Now consider another language L, of even length, defined over Σ = {a, b}, then it's regular expression may be

((a+b)(a+b))*

Now consider another language L, of odd length, defined over Σ = {a, b}, then it's regular expression may be

> (a+b)((a+b)(a+b))* or ((a+b)(a+b))*(a+b)

Remark

It may be noted that a language may be expressed by more than one regular expressions, while given a regular expression there exist a unique language generated by that regular expression.

► Example:

- Consider the language, defined over Σ={a, b} of words having at least one a, may be expressed by a regular expression (a+b)*a(a+b)*.
- Consider the language, defined over
 Σ = {a, b} of words having at least one a and one b, may be expressed by a regular expression
 (a+b)*a(a+b)*b(a+b)*+ (a+b)*b(a+b)*a(a+b)*.

Consider the language, defined over $\Sigma = \{a, b\}, of words starting with double a$ and ending in double b then its regular expression may be aa(a+b)^{*}bb Consider the language, defined over Σ={a, b} of words starting with a and ending in b OR starting with b and ending in a, then its regular expression may be a(a+b)*b+b(a+b)*a

TASK

17

Consider the language, defined over
 Σ={a, b} of words beginning with a, then its regular expression may be a(a+b)*

 Consider the language, defined over
 Σ={a, b} of words beginning and ending in same letter, then its regular expression may be (a+b)+a(a+b)*a+b(a+b)*b

TASK

Consider the language, defined over $\Sigma = \{a, b\} \text{ of words ending in } b$, then its regular expression may be $(a+b)^*b$. Consider the language, defined over $\Sigma = \{a, b\} of words not ending in a,$ then its regular expression may be $(a+b)^*b + \Lambda$. It is to be noted that this language may also be expressed by <u>((a+b)*b)</u>*.

SummingUP Lecture 3

19

RE, Recursive definition of RE, defining languages by RE, { x}^{*}, { x}⁺, {a+b}^{*}, Language of strings having **exactly one aa**, Language of strings of **even length**, Language of strings of **odd length**, RE defines unique language (as Remark), Language of strings having **at least one a**, Language of strings havgin **at least one a and one b**, Language of strings starting with aa and ending in bb, Language of strings starting with and ending in different letters.